

# Life Cycle Assessment for Stanford Information Technology

## Introduction and Background

#### Servers

➤ A server is a piece of computer hardware or software that provides various services, such as storing and managing network data

### **On-Premise Server vs. Cloud Computing**

- > On-premises systems use self-own servers installed and maintained by in-house IT departments
- ➤ Cloud systems use remote servers via the internet offered by cloud service providers

### **On-Premises Options**

- ➤ On-premise servers at Stanford's Forsythe data center (on-campus)
- ➤ On-premise servers at Stanford Research Computing Facility (SRCF)

#### **Cloud Environment**

➤ Single cloud environment, Amazon Web Services (AWS)

#### Significance

- $\succ$  U.S. data centers consumed more than 2% of all U.S. electricity use in 2013
- Address emissions from the IT & Telecommunications category in Stanford for a Scope 3 Emissions Program launched by Stanford University
- ➤ Compare the currently purchased product and seek a more sustainable alternative

## **Q** Analysis Methods and Process Flows

#### **Functional Unit**

➤ The functional unit for the study is a Stanford server (PowerEdge R610) operating at 30% of the full performance for 4 years ( 1.78x1013 ssj\_ops)







.....

#### System Boundary

- The boundary of our life cycle analysis include the environmental impacts of the Dell R610 and R720 server across component manufacturing, assembly, distribution, and use phase (End-of-life phase is excluded)
  Comparative Methodology
  - ➤ Two types of servers are assumed for on-premise (Dell R610) and Cloud computing (Dell R720)

#### **Production Phase**

| Туре                | Mass (kg) | Calculation                 | SimaPro Equiv.<br>Piece |
|---------------------|-----------|-----------------------------|-------------------------|
| SimaPro Computer    | 11.3      | N/A                         | 1                       |
| Dell PowerEdge R610 | 17.69     | $\frac{17.69}{11.3} = 1.57$ | 1.57                    |
| Dell PowerEdge R720 | 28.1      | $\frac{28.1}{11.3} = 2.49$  | 2.49                    |

### Transportation

- ➤ Different travel methods and
  - point-of-use are assumed

#### Use Phase

- > Due to constant demand from Stanford, we only account for 10.8% emission caused by cloud computing at all phases.
- ➤ Different data center PUE and electricity grid are modified for onpremise (Forsythe/SRCF) and Cloud computing (Dell R720)

### Sensitivity Analysis Methodology

Based on the use phase of the on-premise server at Forsythe

- > 20% at lowest and 50% at highest maximum workload
- > 5% uncertainty for the power usage efficiency
- > 0.8% uncertainty in the measurement of active idle power

Group 9: Jianqi Xue, Minxue Gu, Lillian Hung Xuhuan Zhao, Mingxi Zhang Industry Sponsor: Stanford Office of Sustainability CEE 226 – Life Cycle Assessment for Complex Systems Professor Michael Lepech



## Quantitative Results and Analysis

#### **Comparative impact assessment for three Scenarios**

| Summary of Impact Assessment                  |              |                  |              |  |  |  |
|-----------------------------------------------|--------------|------------------|--------------|--|--|--|
| Impact Categories                             | R610 at SRCF | R610 at Forsythe | R720 (Cloud) |  |  |  |
| Ozone Depletion (kg CFC-11 eq)                | 3.12E-05     | 3.32E-05         | 1.04E-05     |  |  |  |
| Global Warming (kg CO <sub>2</sub> eq)        | 1.96E+06     | 2.51E+06         | 4.14E+05     |  |  |  |
| Smog (kg O <sub>3</sub> eq)                   | 6.16E+04     | 7.87E+04         | 2.66E+04     |  |  |  |
| Acidification (kg SO <sub>2</sub> eq)         | 1.69E+04     | 2.15E+04         | 3.58E+03     |  |  |  |
| Eutrophication (kg N eq)                      | 1.75E+02     | 2.22E+02         | 5.03E+01     |  |  |  |
| Carcinogenics (CTUh)                          | 8.20E-03     | 1.05E-02         | 5.95E-04     |  |  |  |
| Non Carcinogenics (CTUh)                      | 1.07E-01     | 1.36E-01         | 1.16E-02     |  |  |  |
| Respiratory Effects (kg PM <sub>2.5</sub> eq) | 9.86E+02     | 1.26E+03         | 1.80E+02     |  |  |  |
| Ecotoxicity (CTUe)                            | 2.61E+06     | 3.32E+06         | 1.36E+05     |  |  |  |
| Fossil Fuel Depletion (MJ Surplus)            | 4.46E+06     | 5.70E+06         | 2.35E+05     |  |  |  |

| Life Cycle Cost Analysis                       |                    |           |              |                              |  |
|------------------------------------------------|--------------------|-----------|--------------|------------------------------|--|
|                                                | On-Premise Servers |           | Cloud Server | Cloud Service                |  |
|                                                | SRCF               | For sythe | (R720)       | (R720 Equivalent)            |  |
| Useful Life (Years)                            | 4                  | 4         | 4            | 4                            |  |
| Purchase Price (\$)                            | 15,828             | 15,828    | 17,242       | Service Price:<br>\$1,220/yr |  |
| Interest (%)                                   | 4                  | 4         | 4            | 4                            |  |
| Installation Cost<br>(\$/server)               | 626                | 626       | 626          | N/A                          |  |
| Replacement Cost<br>(\$/server)                | N/A                | N/A       | N/A          | N/A                          |  |
| Salvage Value<br>(\$/server)                   | 200                | 200       | 218          | N/A                          |  |
| Disposal Cost<br>(\$/server)                   | 20                 | 20        | 20           | N/A                          |  |
| Energy Cost<br>(\$/yr.)                        | 241                | 188       | 170          | N/A                          |  |
| Maintenance Cost<br>(\$/yr.)                   | 900                | 900       | 325          | N/A                          |  |
| Operating Cost (\$/yr.)                        | 115                | 115       | 115          | N/A                          |  |
| Downtime Cost (\$/yr.)                         | 900                | 900       | 900          | N/A                          |  |
| Total Future Costs (\$)                        | -180               | -180      | -198         | N/A                          |  |
| Present Value of<br>Future Costs (\$)          | -154               | -154      | -169         | N/A                          |  |
| Total Annual Costs<br>(\$)                     | 2,156              | 2,103     | 1,510        | N/A                          |  |
| Present Value of<br>Annual Costs               | 7,826              | 7,634     | 5,481        | N/A                          |  |
| Total Life Cycle Cost<br>in Present Value (\$) | 24,126             | 23,934    | 23,180       | 4,428                        |  |
| Allocated LCC<br>in Present Value (\$)         | 24,126             | 23,934    | 2,508        | 4,428                        |  |

| Total Emission     |           |               |              |  |  |  |
|--------------------|-----------|---------------|--------------|--|--|--|
| Airborne Emissions | R610 SRCF | R610 Forsythe | R720 (Cloud) |  |  |  |
| CO2 Fossil (kg)    | 1.74E+06  | 2.22E+06      | 3.91E+05     |  |  |  |
| CO2 Biogenic (kg)  | 5.76E+04  | 7.35E+04      | 3.86E+03     |  |  |  |
| NOx (kg)           | 1.79E+03  | 2.28E+03      | 1.02E+03     |  |  |  |
| SOx (kg)           | 1.56E+04  | 1.99E+04      | 2.77E+03     |  |  |  |
| PM10 (kg)          | 1.07E+02  | 1.37E+02      | 1.99E+01     |  |  |  |
| Lead (kg)          | 1.70E-02  | 2.11E-02      | 3.04E-02     |  |  |  |
| CO Fossil (kg)     | 1.32E+03  | 1.69E+03      | 1.47E+02     |  |  |  |
| CO Biogenic (kg)   | 4.93E+00  | 6.29E+00      | 3.36E-01     |  |  |  |

#### Sensitivity Analysis on Electricity Consumption per Functional Unit



### Main Results

- ➤ The use phase has the largest proportion of pollutants (more than 99%) and the strongest impact
- The production process has noticeable lead emissions and most ozone depletion the impact
- ➤ R720 produces more emissions than R610 at the production stage but much less after allocation
- ➤ R610 at SRCF has the greatest emission at the use stage, except lead. On-premise server (R610) at the transportation stage has a larger impact in all impact categories except for ozone depletion

0.00

#### Sensitivity Analysis Based On-Premise Server at Forsythe

➤ The uncertainty in the load percentage of the server will have the largest influence on the electricity consumption of the server

## Conclusions and Recommendations

#### Conclusions

Life cycle analysis of three data solutions for Stanford IT department

- > Cloud servers have much fewer environmental impacts than on-premise servers
- ➤ The SRCF has superior environmental performance than the Forsythe data

#### Recommendations

- ➤ Through quantification, we find Cloud Computing the most economical and environmentally friendly solution and recommend transferring parts of its on-premises data to the cloud
- $\blacktriangleright$  We recommend that confidential data be stored in the SRCF.
- ➤ We recommend having servers run at a greater utilization rate to optimize the performance-to-power ratio and thereby reducing energy consumption